Emplois

Filtrer par
Post-Docs
12 mois

Post-Doc : Synthesis of New Photosensitizers for CO2 Photoreduction and Carbonylation Reactions

The project focuses on the development of new photosensitizers and catalysts, based on purely organic materials or more abundant metals, for the photoreduction of CO2 to CO. This research, conducted in collaboration with other groups, aims to investigate the catalytic cycle of these new photosensitizers and catalysts, providing insights into the structure-function relationships of these molecular architectures. The ultimate goal is to design more efficient photocatalysts through a rational approach. Key techniques involved in the project include electrochemistry and electronic and vibrational spectroscopy to identify key intermediate species formed during the catalytic cycle. The performance of new catalysts will be evaluated under photocatalytic conditions, focusing on turnover frequency (TOF), turnover number (TON), and selectivity. The CO produced through photoreduction can be utilized in various carbonylation reactions facilitated by catalysis or photocatalysis.

Télécharger la fiche de l'offre
18 mois

POSTDOCTORAL POSITION IN PHOTOCHEMISTRY/PHOTOPHYSICS : PHOTOPHYSICAL MECHANISM OF MOLECULAR MOTORS STUDIED BY TRANSITORY ABSORPTION SPECTROSCOPY

We offer an 18-months postdoctoral position to work on the photophysical mechanism of molecular motors (or more generally photoswitches). You will be responsible and/or participate to the following tasks: • Study of the ground state structure and dynamics at molecular and assembled levels • Characterization of excited-state dynamics at molecular and assembled level • Participation in the supervision of PhDs, engineers, and trainees - restoring the results, communication at international conferences, participation in writing of manuscripts.

Keywords: ultrafast spectroscopy • self-assembling • photoswitches • molecular machines

Télécharger la fiche de l'offre
Thèses
3 ans

Earth abundant metal-based new generation solar cells

The aim of the project is the development of abundant metal-based light-responsive complexes and their use in DSSCs (Dye-sensitized Solar Cells). Several noble metal complexes (Ru, Ir, Pt) have long been considered as lead compounds due to their ideal photophysical and geometrical properties with power conversion efficiency (PCE) values in the 9-11 % range. Despite these ideal photophysical properties, ruthenium is a scarce metal, toxic and expensive and limits the real-world industrial development of the cells. In consequence, the main goal of our project is the replacement of such expensive metals by cheap and environmentally benign metals in the search for developing low-cost efficient devices, and resource-preserving industrial processes.

The L2CM has recently contributed to the field by investigating different approaches to tune the electronic properties of abundant organoferrous complexes (ANR PhotIron). By combination of chemical synthesis and quantum simulations, the parameters influencing the excited state lifetime of organo-ferrous dyes and their interfacial behaviour after chemisorption on semiconductor have been pointed out. The L2CM and the University of Ferrara in Italy (S. Caramori) are currently leaders in the field of iron-sensitized DSSC cells with a record efficiency of 2% very recently obtained.

In spite of these promising results, the efficiency of the Fe-sensitized DSSCs is still to be improved. In this regard, dye-TiO2 interfacial TD-DFT computations have already shed light on the reasons for such limited performance. Therefore, current synthetic efforts are targeted to overcome these specific aspects with the aim to make organoferrous complexes a genuinely alternative to their ruthenium counterparts.

Télécharger la fiche de l'offre
3 ans

PhD Student Position in Organic/ Polymer Chemistry: Cyanine Dimerization-Promoted Polymeric Micelles Core-Crosslinkage for Phototheranostics

Project: Photothermal therapy (PTT) has garnered increasing interest as a potential alternative to conventional therapeutic methods. This technique utilizes molecules or nanoparticles capable of efficiently converting light into heat. Highly challenging research aspects in the field concern the development of fully organic agents with high biosafety, light absorption in the 700-900 nm biologically transparent window, and that provide efficient PTT effect combined with photoacoustic image-guiding strategy. The CD-Mix project aims to investigate the use of cyanine polymer-conjugates for the fabrication of core-cross-linked micelles though the self-assembly of conjugates followed by dimerization of cyanine dyes within micelles, ultimately facilitating image-guided PTT applications.

Télécharger la fiche de l'offre
3 ans

Stratégies régiosélectives de multiformation de liaisons C-C par réarrangement métallotropique et valorisation de CO2

Les efforts de recherche académique en synthèse organique ont toujours été historiquement tournés vers l’élaboration de réactions menant à la formation sélective d’une seule liaison carbone-carbone de manière prédictive. Puisque les structures organiques d’intérêt pour la chimie fine et la pharmacie sont généralement très différentes des composés commerciaux disponibles, cette philosophie conduit inévitablement à proposer des séquences synthétiques longues, donc multi-étapes, pour atteindre les cibles désirées. Ces dernières sont alors obtenues en quantités infimes et au prix d’efforts titanesques, rendant ainsi leurs voies de synthèse respectives presque intransposables à l’échelle industrielle dans la plupart des cas. C’est pourquoi un nombre croissant de chimistes de synthèse s’oriente vers le développement de procédés permettant la création monotope de plusieurs liaisons carbone-carbone sans les opérations traditionnelles de traitement et de purification intermédiaires. C’est le principe écotope ou principe d’économie d’étapes, qui lorsqu’il est associé à l’utilisation de ressources abondantes, biocompatibles et/ou renouvelables, permet de tendre davantage vers une synthèse idéale. Nous proposons de nous appuyer sur le concept de « fonctionnalisation à distance par induction interne » pour donner une nouvelle direction à ce principe. Lorsque ce concept est judicieusement employé, il devient possible de former sélectivement plusieurs liaisons C-C sur sites distants en une seule étape et même de passer de la simplicité moléculaire à la complexité en un temps record.

Télécharger la fiche de l'offre